37 research outputs found

    A cooperative-relational approach to digital libraries

    Get PDF
    Copyright @ 2007 Springer-Verlag, Berlin HeidelbergThis paper presents a novel approach to model-driven development of Digital Library (DL) systems. The overall idea is to allow Digital Library systems designers (e.g. information architects, librarians, domain experts) to easily design such systems by using a visual language. We designed a Domain Specific Visual Language for such a purpose and developed a framework supporting it; this framework helps designers by automatically generating code for the defined Digital Library system, so that they do not have to get involved into technical issues concerning its deployment. In our approach, both Human-Computer Interaction and Computer Supported Collaborative Work techniques are exploited when generating interfaces and services for the specific Digital Library domain

    Improving a gold standard: treating human relevance judgments of MEDLINE document pairs

    Get PDF
    Given prior human judgments of the condition of an object it is possible to use these judgments to make a maximal likelihood estimate of what future human judgments of the condition of that object will be. However, if one has a reasonably large collection of similar objects and the prior human judgments of a number of judges regarding the condition of each object in the collection, then it is possible to make predictions of future human judgments for the whole collection that are superior to the simple maximal likelihood estimate for each object in isolation. This is possible because the multiple judgments over the collection allow an analysis to determine the relative value of a judge as compared with the other judges in the group and this value can be used to augment or diminish a particular judge’s influence in predicting future judgments. Here we study and compare five different methods for making such improved predictions and show that each is superior to simple maximal likelihood estimates

    Application of an advanced transient stability assessment and control method to a realistic power system

    Full text link
    peer reviewedThe paper presents a technical overview of a large research project on Dynamic Security Assessment (DSA) supported by EU. Transient Stability Assessment and Control, which was one of the main goals of the project, is taken into consideration by presenting the fundamental theoretical methodology and possible applications. A specific prototype installation for a realistic power system is then reported by presenting and commenting some of the obtained results

    Conceptual Information Extraction with Link-Based Search

    No full text
    corecore